

Welcome to CoolAMQP’s documentation!

Contents

	CoolAMQP cluster

	Tutorial
	Publishing and consuming

	Caveats
	memoryviews

	Glossary of all AMQP frames

	Usage basics

	Frame tracing
	LoggingFrameTracer

	HoldingFrameTracer

Quick FAQ

Q: I’m running uWSGI and I can’t publish messages. What’s wrong?

	A: Since CoolAMQP spins a thread in the background, make sure to run [https://uwsgi-docs.readthedocs.io/en/latest/WSGIquickstart.html#a-note-on-python-threads]
	uwsgi with --enable-threads

Indices and tables

	Index

	Module Index

	Search Page

CoolAMQP cluster

	
class coolamqp.clustering.Cluster(nodes, on_fail=None, extra_properties=None, log_frames=None, name=None, on_blocked=None, tracer=None)

	Frontend for your AMQP needs.

This has ListenerThread.

Call .start() to connect to AMQP.

It is not safe to fork() after .start() is called, but it’s OK before.

	Parameters

	
	nodes – list of nodes, or a single node. For now, only one is supported.

	on_fail – callable/0 to call when connection fails in an
unclean way. This is a one-shot

	extra_properties – refer to documentation in [/coolamqp/connection/connection.py]
Connection.__init__

	log_frames (tp.Optional[coolamqp.tracing.BaseFrameTracer]) – an object that supports logging each and every frame CoolAMQP sends and
receives from the broker

	name – name to appear in log items and prctl() for the listener thread

	on_blocked – callable to call when ConnectionBlocked/ConnectionUnblocked is received. It will be
called with a value of True if connection becomes blocked, and False upon an unblock

	tracer – tracer, if opentracing is installed

	
bind(queue, exchange, routing_key, persistent=False, span=None, dont_trace=False)

	Bind a queue to an exchange

	
consume(queue, on_message=None, span=None, dont_trace=False, *args, **kwargs)

	Start consuming from a queue.

args and kwargs will be passed to Consumer constructor (coolamqp.attaches.consumer.Consumer).
Don’t use future_to_notify - it’s done here!

Take care not to lose the Consumer object - it’s the only way to cancel a consumer!

	Parameters

	
	queue – Queue object, being consumed from right now.
Note that name of anonymous queue might change at any time!

	on_message – callable that will process incoming messages
if you leave it at None, messages will be .put into self.events

	span – optional span, if opentracing is installed

	dont_trace – if True, this won’t output a span

	Return type

	Tuple[Consumer, Future]

	Returns

	a tuple (Consumer instance, and a Future), that tells, when consumer is ready

	
declare(obj, persistent=False, span=None, dont_trace=False)

	Declare a Queue/Exchange

	Parameters

	
	obj (tp.Union[Queue, Exchange]) – Queue/Exchange object

	persistent (bool) – should it be redefined upon reconnect?

	span (tp.Optional[opentracing.Span]) – optional parent span, if opentracing is installed

	dont_trace (bool) – if True, a span won’t be output

	Return type

	concurrent.futures.Future

	Returns

	Future

	
delete_queue(queue)

	Delete a queue.

	Parameters

	queue (coolamqp.objects.Queue) – Queue instance that represents what to delete

	Return type

	Future

	Returns

	a Future (will succeed with None or fail with AMQPError)

	
drain(timeout, span=None, dont_trace=False)

	Return an Event.

	Parameters

	
	timeout – time to wait for an event. 0 means return immediately. None means block forever

	span – optional parent span, if opentracing is installed

	dont_trace – if True, this span won’t be traced

	Return type

	Event

	Returns

	an Event instance. NothingMuch is returned when there’s nothing within a given timoeout

	
publish(message, exchange=None, routing_key='', tx=None, confirm=None, span=None, dont_trace=False)

	Publish a message.

	Parameters

	
	message (Message) – Message to publish

	exchange (tp.Union[Exchange, str, bytes]) – exchange to use. Default is the “direct” empty-name exchange.

	routing_key (tp.Union[str, bytes]) – routing key to use

	confirm (tp.Optional[bool]) – Whether to publish it using confirms/transactions.
If you choose so, you will receive a Future that can be used
to check it broker took responsibility for this message.
Note that if tx if False, and message cannot be delivered to broker at once,
it will be discarded

	tx (tp.Optional[bool]) – deprecated, alias for confirm

	span (tp.Optional[opentracing.Span]) – optionally, current span, if opentracing is installed

	dont_trace (bool) – if set to True, a span won’t be generated

	Return type

	tp.Optional[Future]

	Returns

	Future to be finished on completion or None, is confirm/tx was not chosen

	
shutdown(wait=True)

	Terminate all connections, release resources - finish the job.

	Parameters

	wait (bool) – block until this is done

	Raises

	RuntimeError – if called without start() being called first

	Return type

	None

	
start(wait=True, timeout=10.0)

	Connect to broker. Initialize Cluster.

Only after this call is Cluster usable.
It is not safe to fork after this.

	Parameters

	
	wait (bool) – block until connection is ready

	timeout (float) – timeout to wait until the connection is ready. If it is not, a
ConnectionDead error will be raised

	Raises

	
	RuntimeError – called more than once

	ConnectionDead – failed to connect within timeout

	Return type

	None

Tutorial

If you want to connect to an AMQP broker, you need:
* its address (and port)
* login and password
* name of the virtual host

An idea of a heartbeat interval would be good, but you can do without. Since CoolAMQP will support clusters
in the future, you should define the nodes first. You can do it using _NodeDefinition_.
See NodeDefinition’s documentation for alternative ways to do this, but here we will use
the AMQP connection string.

	
class coolamqp.objects.NodeDefinition(*args, **kwargs)

	Definition of a reachable AMQP node.

This object is hashable.

>>> a = NodeDefinition(host='192.168.0.1', user='admin', password='password',
>>> virtual_host='vhost')

or

>>> a = NodeDefinition('192.168.0.1', 'admin', 'password')

or

>>> a = NodeDefinition('amqp://user:password@host/virtual_host')

or

>>> a = NodeDefinition('amqp://user:password@host:port/virtual_host', hearbeat=20)

AMQP connection string may be either bytes or str/unicode

	Additional keyword parameters that can be specified:
	heartbeat - heartbeat interval in seconds
port - TCP port to use. Default is 5672

	Raises

	ValueError – invalid parameters

from coolamqp.objects import NodeDefinition

node = NodeDefinition('amqp://user@password:host/vhost')

Cluster instances are used to interface with the cluster (or a single broker). It
accepts a list of nodes:

from coolamqp.clustering import Cluster
cluster = Cluster([node], name='My Cluster')
cluster.start(wait=True)

wait=True will block until connection is completed. After this, you can use other methods.

name is optional. If you specify it, and have setproctitle [https://pypi.org/project/setproctitle/] installed, the thread will
receive a provided label, postfixed by AMQP listener thread.

	
class coolamqp.clustering.Cluster(nodes, on_fail=None, extra_properties=None, log_frames=None, name=None, on_blocked=None, tracer=None)

	Frontend for your AMQP needs.

This has ListenerThread.

Call .start() to connect to AMQP.

It is not safe to fork() after .start() is called, but it’s OK before.

	Parameters

	
	nodes – list of nodes, or a single node. For now, only one is supported.

	on_fail – callable/0 to call when connection fails in an
unclean way. This is a one-shot

	extra_properties – refer to documentation in [/coolamqp/connection/connection.py]
Connection.__init__

	log_frames (tp.Optional[coolamqp.tracing.BaseFrameTracer]) – an object that supports logging each and every frame CoolAMQP sends and
receives from the broker

	name – name to appear in log items and prctl() for the listener thread

	on_blocked – callable to call when ConnectionBlocked/ConnectionUnblocked is received. It will be
called with a value of True if connection becomes blocked, and False upon an unblock

	tracer – tracer, if opentracing is installed

	
bind(queue, exchange, routing_key, persistent=False, span=None, dont_trace=False)

	Bind a queue to an exchange

	
consume(queue, on_message=None, span=None, dont_trace=False, *args, **kwargs)

	Start consuming from a queue.

args and kwargs will be passed to Consumer constructor (coolamqp.attaches.consumer.Consumer).
Don’t use future_to_notify - it’s done here!

Take care not to lose the Consumer object - it’s the only way to cancel a consumer!

	Parameters

	
	queue – Queue object, being consumed from right now.
Note that name of anonymous queue might change at any time!

	on_message – callable that will process incoming messages
if you leave it at None, messages will be .put into self.events

	span – optional span, if opentracing is installed

	dont_trace – if True, this won’t output a span

	Return type

	Tuple[Consumer, Future]

	Returns

	a tuple (Consumer instance, and a Future), that tells, when consumer is ready

	
declare(obj, persistent=False, span=None, dont_trace=False)

	Declare a Queue/Exchange

	Parameters

	
	obj (tp.Union[Queue, Exchange]) – Queue/Exchange object

	persistent (bool) – should it be redefined upon reconnect?

	span (tp.Optional[opentracing.Span]) – optional parent span, if opentracing is installed

	dont_trace (bool) – if True, a span won’t be output

	Return type

	concurrent.futures.Future

	Returns

	Future

	
delete_queue(queue)

	Delete a queue.

	Parameters

	queue (coolamqp.objects.Queue) – Queue instance that represents what to delete

	Return type

	Future

	Returns

	a Future (will succeed with None or fail with AMQPError)

	
drain(timeout, span=None, dont_trace=False)

	Return an Event.

	Parameters

	
	timeout – time to wait for an event. 0 means return immediately. None means block forever

	span – optional parent span, if opentracing is installed

	dont_trace – if True, this span won’t be traced

	Return type

	Event

	Returns

	an Event instance. NothingMuch is returned when there’s nothing within a given timoeout

	
publish(message, exchange=None, routing_key='', tx=None, confirm=None, span=None, dont_trace=False)

	Publish a message.

	Parameters

	
	message (Message) – Message to publish

	exchange (tp.Union[Exchange, str, bytes]) – exchange to use. Default is the “direct” empty-name exchange.

	routing_key (tp.Union[str, bytes]) – routing key to use

	confirm (tp.Optional[bool]) – Whether to publish it using confirms/transactions.
If you choose so, you will receive a Future that can be used
to check it broker took responsibility for this message.
Note that if tx if False, and message cannot be delivered to broker at once,
it will be discarded

	tx (tp.Optional[bool]) – deprecated, alias for confirm

	span (tp.Optional[opentracing.Span]) – optionally, current span, if opentracing is installed

	dont_trace (bool) – if set to True, a span won’t be generated

	Return type

	tp.Optional[Future]

	Returns

	Future to be finished on completion or None, is confirm/tx was not chosen

	
shutdown(wait=True)

	Terminate all connections, release resources - finish the job.

	Parameters

	wait (bool) – block until this is done

	Raises

	RuntimeError – if called without start() being called first

	Return type

	None

	
start(wait=True, timeout=10.0)

	Connect to broker. Initialize Cluster.

Only after this call is Cluster usable.
It is not safe to fork after this.

	Parameters

	
	wait (bool) – block until connection is ready

	timeout (float) – timeout to wait until the connection is ready. If it is not, a
ConnectionDead error will be raised

	Raises

	
	RuntimeError – called more than once

	ConnectionDead – failed to connect within timeout

	Return type

	None

Publishing and consuming

Connecting is boring. After we do, we want to do something! Let’s try sending a message, and receiving it. To do that,
you must first define a queue, and register a consumer.

from coolamqp.objects import Queue

queue = Queue(u'my_queue', auto_delete=True, exclusive=True)

consumer, consume_confirm = cluster.consume(queue, no_ack=False)
consume_confirm.result() # wait for consuming to start

This will create an auto-delete and exclusive queue. After than, a consumer will be registered for this queue.
_no_ack=False_ will mean that we have to manually confirm messages.

You can specify a callback, that will be called with a message if one’s received by this consumer. Since
we did not do that, this will go to a generic queue belonging to _Cluster_.

consumer is a _Consumer_ object. This allows us to do some things with the consumer (such as setting QoS),
but most importantly it allows us to cancel it later. _consume_confirm_ is a _Future_, that will succeed
when AMQP _basic.consume-ok_ is received.

To send a message we need to construct it first, and later publish:

from coolamqp.objects import Message

msg = Message(b'hello world', properties=Message.Properties())
cluster.publish(msg, routing_key=u'my_queue')

	
class coolamqp.objects.Message(body, properties=None)

	An AMQP message. Has a binary body, and some properties.

Properties is a highly regularized class - see
coolamqp.framing.definitions.BasicContentPropertyList
for a list of possible properties.

	Parameters

	
	body (anything with a buffer interface) – stream of octets

	properties (MessageProperties instance, None or a dict (SLOW!)) – AMQP properties to be sent along.
default is ‘no properties at all’
You can pass a dict - it will be passed to
MessageProperties,
but it’s slow - don’t do that.

	
Properties

	alias of coolamqp.framing.definitions.BasicContentPropertyList

This creates a message with no properties, and sends it through default (direct) exchange to our queue.
Note that CoolAMQP simply considers your messages to be bags of bytes + properties. It will not modify them,
nor decode, and will always expect and return bytes.

To actually get our message, we need to start a consumer first. To do that, just invoke:

cons, fut = cluster.consume(Queue('name of the queue'), **kwargs)

Where kwargs are passed directly to Consumer class.
cons is a Consumer object, and fut is a Future that will happen when listening has been registered on target
server.

	
class coolamqp.attaches.Consumer(queue, on_message, span=None, no_ack=True, qos=None, cancel_on_failure=False, future_to_notify=None, fail_on_first_time_resource_locked=False, body_receive_mode=0)

	This object represents a consumer in the system.

Consumer may reside on any AMQP broker, this is to be decided by CoolAMQP.
Consumer, when created, has the state of ST_SYNCING. CoolAMQP will
try to declare the consumer where it makes most sense for it to be.

If it succeeds, the consumer will enter state ST_ONLINE, and callables
on_start will be called. This means that broker has confirmed that this
consumer is operational and receiving messages.

Note that does not attempt to cancel consumers, or any of such nonsense.
Having a channel per consumer gives you the unique possibility of simply
closing the channel. Since this implies cancelling the consumer, here you
go.

	WARNING: READ DEFAULT VALUES IN CONSTRUCTOR! TAKE CARE WHAT YOUR CONSUMERS
	DO!

You can subscribe to be informed when the consumer is cancelled (for any
reason, server or client side) with:

>>> con, fut = Cluster.consume(...)
>>> def im_called_on_cancel_for_any_reason(): # must have arity of 0
>>> ..
>>> con.on_cancel.add(im_called_on_cancel_for_any_reason)
>>> con.cancel()

Or, if RabbitMQ is in use, you can be informed upon a Consumer Cancel
Notification:

>>> con.on_broker_cancel.add(im_cancelled_by_broker)

	Parameters

	
	queue (coolamqp.objects.Queue) – Queue object, being consumed from right now.
Note that name of anonymous queue might change at any time!

	on_message (callable(ReceivedMessage instance)) – callable that will process incoming messages

	span – optional span, if opentracing is installed

	no_ack (bool) – Will this consumer require acknowledges from messages?

	qos (tuple(int, int) or tuple(None, int) or int) – a tuple of (prefetch size, prefetch window) for this
consumer, or an int (prefetch window only).
If an int is passed, prefetch size will be set to 0 (which means
undefined), and this int will be used for prefetch window

	cancel_on_failure (bool) – Consumer will cancel itself when link goes
down

	future_to_notify (concurrent.futures.Future) – Future to succeed when this consumer goes
online for the first time.
This future can also raise with AMQPError if
it fails to.

	fail_on_first_time_resource_locked (bool) – When consumer is declared
for the first time, and RESOURCE_LOCKED is encountered, it will
fail the future with ResourceLocked, and consumer will cancel
itself.
By default it will retry until success is made.
If the consumer doesn’t get the chance to be declared - because
of a connection fail - next reconnect will consider this to be
SECOND declaration, ie. it will retry ad infinitum

	body_receive_mode (a property of BodyReceiveMode) – how should message.body be received. This
has a performance impact

	
cancel()

	Cancel the customer.

.ack() or .nack() for messages from this customer will have no effect.

	Return type

	Future

	Returns

	a Future to tell when it’s done. The future will always
succeed - sooner, or later.
NOTE: Future is OK’d when entire channel is destroyed

	
on_broker_cancel

	public, called on Customer Cancel Notification

	
on_cancel

	public, called on cancel for any reason

	
on_close(payload=None)

	Handle closing the channel. It sounds like an exception…

This is done in two steps:
1. self.state <- ST_OFFLINE, on_event(EV_OFFLINE) upon detecting

that no more messages will
be there

	self.channel_id <- None, channel is returned to Connection - c
hannel has been physically torn down

Note, this can be called multiple times, and eventually with None.

	Return type

	None

	
on_delivery(sth)

	Callback for delivery-related shit

	Parameters

	sth – AMQPMethodFrame WITH basic-deliver, AMQPHeaderFrame or
AMQPBodyFrame

	
on_operational(operational)

	[EXTEND ME] Called by internal methods (on_*) when channel has achieved (or lost) operational status.

If this is called with operational=True, then for sure it will be called with operational=False.

This will, therefore, get called an even number of times.

	Called by Channeler, when:
	
	
	Channeler.on_close gets called and state is ST_ONLINE
	on_close registers ChannelClose, ChannelCloseOk, BasicCancel

	Parameters

	operational (bool) – True if channel has just become operational, False if it has just become useless.

	Return type

	None

	
on_setup(payload)

	Called with different kinds of frames - during setup

	Return type

	None

	
set_qos(prefetch_size, prefetch_count)

	Set new QoS for this consumer.

	Parameters

	
	prefetch_size (int) – prefetch in octets

	prefetch_count (int) – prefetch in whole messages

	Return type

	None

Caveats

Things to look out for

memoryviews

Since CoolAMQP tries to be fast, it uses memoryviews everywhere. ReceivedMessage properties, and message
properties therefore, are memoryviews. So, it you wanted to read the routing key a message was sent with,
or message’s encoding, you should do:

received_msg.routing_key.to_bytes()
received_msg.properties.content_encoding.to_bytes()

Only the body property of the message will be a byte object (and not even that it you explicitly ask otherwise).

Note that YOU, when sending messages, should not use memoryviews. Pass proper byte objects and text objects
as required.

AMQPError’s returned to you via futures will also have memoryviews as reply_text, although they will
properly display that once __repr__ or __str__ is called on them.

It was considered whether to unserialize short fields, such as routing_key or exchange, but it was decided against.
Creating a new memoryview carries at least much overhead as an empty string, but there’s no need to copy.
Plus, it’s not known whether you will use these strings at all!

If you need to, you got memoryviews. Plus they support the __eq__ protocol, which should cover most
use cases without even converting.

Glossary of all AMQP frames

	
class coolamqp.framing.definitions.ConnectionBlocked(reason)

	This method indicates that a connection has been blocked

and does not accept new publishes.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionClose(reply_code, reply_text, class_id, method_id)

	Request a connection close

This method indicates that the sender wants to close the
connection. This may be
due to internal conditions (e.g. a forced shut-down) or due to
an error handling
a specific method, i.e. an exception. When a close is due to an
exception, the
sender provides the class and method id of the method which
caused the exception.

	Parameters

	
	class_id (int, 16 bit unsigned (class-id in AMQP)) – Failing method class
When the close is provoked by a method exception, this is
the class of the
method.

	method_id (int, 16 bit unsigned (method-id in AMQP)) – Failing method id
When the close is provoked by a method exception, this is
the ID of the method.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionCloseOk

	Confirm a connection close

This method confirms a Connection.Close method and tells the
recipient that it is
safe to release resources for the connection and close the
socket.

	
class coolamqp.framing.definitions.ConnectionOpen(virtual_host)

	Open connection to virtual host

This method opens a connection to a virtual host, which is a
collection of
resources, and acts to separate multiple application domains
within a server.
The server may apply arbitrary limits per virtual host, such as
the number
of each type of entity that may be used, per connection and/or
in total.

	Parameters

	virtual_host (binary type (max length 255) (path in AMQP)) – Virtual host name
The name of the virtual host to work with.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionOpenOk

	Signal that connection is ready

This method signals to the client that the connection is ready
for use.

	
class coolamqp.framing.definitions.ConnectionStart(version_major, version_minor, server_properties, mechanisms, locales)

	Start connection negotiation

This method starts the connection negotiation process by telling
the client the
protocol version that the server proposes, along with a list of
security mechanisms
which the client can use for authentication.

	Parameters

	
	version_major (int, 8 bit unsigned (octet in AMQP)) – Protocol major version
The major version number can take any value from 0 to 99 as
defined in the
AMQP specification.

	version_minor (int, 8 bit unsigned (octet in AMQP)) – Protocol minor version
The minor version number can take any value from 0 to 99 as
defined in the
AMQP specification.

	server_properties (table. See coolamqp.uplink.framing.field_table (peer-properties in AMQP)) – Server properties
The properties SHOULD contain at least these fields:
“host”, specifying the
server host name or address, “product”, giving the name
of the server product,
“version”, giving the name of the server version,
“platform”, giving the name
of the operating system, “copyright”, if appropriate,
and “information”, giving
other general information.

	mechanisms (binary type (longstr in AMQP)) – Available security mechanisms
A list of the security mechanisms that the server supports,
delimited by spaces.

	locales (binary type (longstr in AMQP)) – Available message locales
A list of the message locales that the server supports,
delimited by spaces. The
locale defines the language in which the server will send
reply texts.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionSecure(challenge)

	Security mechanism challenge

The SASL protocol works by exchanging challenges and responses
until both peers have
received sufficient information to authenticate each other. This
method challenges
the client to provide more information.

	Parameters

	challenge (binary type (longstr in AMQP)) – Security challenge data
Challenge information, a block of opaque binary data passed
to the security
mechanism.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionStartOk(client_properties, mechanism, response, locale)

	Select security mechanism and locale

This method selects a SASL security mechanism.

	Parameters

	
	client_properties (table. See coolamqp.uplink.framing.field_table (peer-properties in AMQP)) – Client properties
The properties SHOULD contain at least these fields:
“product”, giving the name
of the client product, “version”, giving the name of the
client version, “platform”,
giving the name of the operating system, “copyright”, if
appropriate, and
“information”, giving other general information.

	mechanism (binary type (max length 255) (shortstr in AMQP)) – Selected security mechanism
A single security mechanisms selected by the client, which
must be one of those
specified by the server.

	response (binary type (longstr in AMQP)) – Security response data
A block of opaque data passed to the security mechanism. The
contents of this
data are defined by the SASL security mechanism.

	locale (binary type (max length 255) (shortstr in AMQP)) – Selected message locale
A single message locale selected by the client, which must
be one of those
specified by the server.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionSecureOk(response)

	Security mechanism response

This method attempts to authenticate, passing a block of SASL
data for the security
mechanism at the server side.

	Parameters

	response (binary type (longstr in AMQP)) – Security response data
A block of opaque data passed to the security mechanism. The
contents of this
data are defined by the SASL security mechanism.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionTune(channel_max, frame_max, heartbeat)

	Propose connection tuning parameters

This method proposes a set of connection configuration values to
the client. The
client can accept and/or adjust these.

	Parameters

	
	channel_max (int, 16 bit unsigned (short in AMQP)) – Proposed maximum channels
Specifies highest channel number that the server permits.
Usable channel numbers
are in the range 1..channel-max. Zero indicates no specified
limit.

	frame_max (int, 32 bit unsigned (long in AMQP)) – Proposed maximum frame size
The largest frame size that the server proposes for the
connection, including
frame header and end-byte. The client can negotiate a lower
value. Zero means
that the server does not impose any specific limit but may
reject very large
frames if it cannot allocate resources for them.

	heartbeat (int, 16 bit unsigned (short in AMQP)) – Desired heartbeat delay
The delay, in seconds, of the connection heartbeat that the
server wants.
Zero means the server does not want a heartbeat.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionTuneOk(channel_max, frame_max, heartbeat)

	Negotiate connection tuning parameters

This method sends the client’s connection tuning parameters to
the server.
Certain fields are negotiated, others provide capability
information.

	Parameters

	
	channel_max (int, 16 bit unsigned (short in AMQP)) – Negotiated maximum channels
The maximum total number of channels that the client will
use per connection.

	frame_max (int, 32 bit unsigned (long in AMQP)) – Negotiated maximum frame size
The largest frame size that the client and server will use
for the connection.
Zero means that the client does not impose any specific
limit but may reject
very large frames if it cannot allocate resources for them.
Note that the
frame-max limit applies principally to content frames, where
large contents can
be broken into frames of arbitrary size.

	heartbeat (int, 16 bit unsigned (short in AMQP)) – Desired heartbeat delay
The delay, in seconds, of the connection heartbeat that the
client wants. Zero
means the client does not want a heartbeat.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConnectionUnblocked

	This method indicates that a connection has been unblocked

and now accepts publishes.

	
class coolamqp.framing.definitions.ChannelClose(reply_code, reply_text, class_id, method_id)

	Request a channel close

This method indicates that the sender wants to close the
channel. This may be due to
internal conditions (e.g. a forced shut-down) or due to an error
handling a specific
method, i.e. an exception. When a close is due to an exception,
the sender provides
the class and method id of the method which caused the
exception.

	Parameters

	
	class_id (int, 16 bit unsigned (class-id in AMQP)) – Failing method class
When the close is provoked by a method exception, this is
the class of the
method.

	method_id (int, 16 bit unsigned (method-id in AMQP)) – Failing method id
When the close is provoked by a method exception, this is
the ID of the method.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ChannelCloseOk

	Confirm a channel close

This method confirms a Channel.Close method and tells the
recipient that it is safe
to release resources for the channel.

	
class coolamqp.framing.definitions.ChannelFlow(active)

	Enable/disable flow from peer

This method asks the peer to pause or restart the flow of
content data sent by
a consumer. This is a simple flow-control mechanism that a peer
can use to avoid
overflowing its queues or otherwise finding itself receiving
more messages than
it can process. Note that this method is not intended for window
control. It does
not affect contents returned by Basic.Get-Ok methods.

	Parameters

	active (bool (bit in AMQP)) – Start/stop content frames
If 1, the peer starts sending content frames. If 0, the peer
stops sending
content frames.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ChannelFlowOk(active)

	Confirm a flow method

Confirms to the peer that a flow command was received and
processed.

	Parameters

	active (bool (bit in AMQP)) – Current flow setting
Confirms the setting of the processed flow method: 1 means
the peer will start
sending or continue to send content frames; 0 means it will
not.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ChannelOpen

	Open a channel for use

This method opens a channel to the server.

	
class coolamqp.framing.definitions.ChannelOpenOk

	Signal that the channel is ready

This method signals to the client that the channel is ready for
use.

	
class coolamqp.framing.definitions.ExchangeBind(destination, source, routing_key, no_wait, arguments)

	Bind exchange to an exchange

This method binds an exchange to an exchange.

	Parameters

	
	destination (binary type (max length 255) (exchange-name in AMQP)) – Name of the destination exchange to bind to
Specifies the name of the destination exchange to bind.

	source (binary type (max length 255) (exchange-name in AMQP)) – Name of the source exchange to bind to
Specifies the name of the source exchange to bind.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Message routing key
Specifies the routing key for the binding. The routing key
is used for routing messages depending on the exchange
configuration. Not all exchanges use a routing key - refer
to the specific exchange documentation.

	arguments (table. See coolamqp.uplink.framing.field_table (table in AMQP)) – Arguments for binding
A set of arguments for the binding. The syntax and semantics
of these arguments depends on the exchange class.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ExchangeBindOk

	Confirm bind successful

This method confirms that the bind was successful.

	
class coolamqp.framing.definitions.ExchangeDeclare(exchange, type_, passive, durable, auto_delete, internal, no_wait, arguments)

	Verify exchange exists, create if needed

This method creates an exchange if it does not already exist,
and if the exchange
exists, verifies that it is of the correct and expected class.

	Parameters

	
	exchange (binary type (max length 255) (exchange-name in AMQP)) – Exchange names starting with “amq.” are reserved for
pre-declared and
standardised exchanges. The client MAY declare an
exchange starting with
“amq.” if the passive option is set, or the exchange
already exists.

	type (binary type (max length 255) (shortstr in AMQP)) – Exchange type
Each exchange belongs to one of a set of exchange types
implemented by the
server. The exchange types define the functionality of the
exchange - i.e. how
messages are routed through it. It is not valid or
meaningful to attempt to
change the type of an existing exchange.

	passive (bool (bit in AMQP)) – Do not create exchange
If set, the server will reply with Declare-Ok if the
exchange already
exists with the same name, and raise an error if not. The
client can
use this to check whether an exchange exists without
modifying the
server state. When set, all other method fields except name
and no-wait
are ignored. A declare with both passive and no-wait has no
effect.
Arguments are compared for semantic equivalence.

	durable (bool (bit in AMQP)) – Request a durable exchange
If set when creating a new exchange, the exchange will be
marked as durable.
Durable exchanges remain active when a server restarts.
Non-durable exchanges
(transient exchanges) are purged if/when a server restarts.

	auto_delete (bool (bit in AMQP)) – Auto-delete when unused
If set, the exchange is deleted when all queues have
finished using it.

	internal (bool (bit in AMQP)) – Create internal exchange
If set, the exchange may not be used directly by publishers,
but only when bound to other exchanges. Internal exchanges
are used to construct wiring that is not visible to
applications.

	arguments (table. See coolamqp.uplink.framing.field_table (table in AMQP)) – Arguments for declaration
A set of arguments for the declaration. The syntax and
semantics of these
arguments depends on the server implementation.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ExchangeDelete(exchange, if_unused, no_wait)

	Delete an exchange

This method deletes an exchange. When an exchange is deleted all
queue bindings on
the exchange are cancelled.

	Parameters

	
	exchange (binary type (max length 255) (exchange-name in AMQP)) – The client must not attempt to delete an exchange that
does not exist.

	if_unused (bool (bit in AMQP)) – Delete only if unused
If set, the server will only delete the exchange if it has
no queue bindings. If
the exchange has queue bindings the server does not delete
it but raises a
channel exception instead.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ExchangeDeclareOk

	Confirm exchange declaration

This method confirms a Declare method and confirms the name of
the exchange,
essential for automatically-named exchanges.

	
class coolamqp.framing.definitions.ExchangeDeleteOk

	Confirm deletion of an exchange

This method confirms the deletion of an exchange.

	
class coolamqp.framing.definitions.ExchangeUnbind(destination, source, routing_key, no_wait, arguments)

	Unbind an exchange from an exchange

This method unbinds an exchange from an exchange.

	Parameters

	
	destination (binary type (max length 255) (exchange-name in AMQP)) – Specifies the name of the destination exchange to unbind.

	source (binary type (max length 255) (exchange-name in AMQP)) – Specifies the name of the source exchange to unbind.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Routing key of binding
Specifies the routing key of the binding to unbind.

	arguments (table. See coolamqp.uplink.framing.field_table (table in AMQP)) – Arguments of binding
Specifies the arguments of the binding to unbind.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ExchangeUnbindOk

	Confirm unbind successful

This method confirms that the unbind was successful.

	
class coolamqp.framing.definitions.QueueBind(queue, exchange, routing_key, no_wait, arguments)

	Bind queue to an exchange

This method binds a queue to an exchange. Until a queue is bound
it will not
receive any messages. In a classic messaging model,
store-and-forward queues
are bound to a direct exchange and subscription queues are bound
to a topic
exchange.

	Parameters

	
	queue (binary type (max length 255) (queue-name in AMQP)) – Specifies the name of the queue to bind.

	exchange (binary type (max length 255) (exchange-name in AMQP)) – Name of the exchange to bind to
A client MUST NOT be allowed to bind a queue to a
non-existent exchange.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Message routing key
Specifies the routing key for the binding. The routing key
is used for routing
messages depending on the exchange configuration. Not all
exchanges use a
routing key - refer to the specific exchange documentation.
If the queue name
is empty, the server uses the last queue declared on the
channel. If the
routing key is also empty, the server uses this queue name
for the routing
key as well. If the queue name is provided but the routing
key is empty, the
server does the binding with that empty routing key. The
meaning of empty
routing keys depends on the exchange implementation.

	arguments (table. See coolamqp.uplink.framing.field_table (table in AMQP)) – Arguments for binding
A set of arguments for the binding. The syntax and semantics
of these arguments
depends on the exchange class.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueueBindOk

	Confirm bind successful

This method confirms that the bind was successful.

	
class coolamqp.framing.definitions.QueueDeclare(queue, passive, durable, exclusive, auto_delete, no_wait, arguments)

	Declare queue, create if needed

This method creates or checks a queue. When creating a new queue
the client can
specify various properties that control the durability of the
queue and its
contents, and the level of sharing for the queue.

	Parameters

	
	queue (binary type (max length 255) (queue-name in AMQP)) – The queue name may be empty, in which case the server
MUST create a new
queue with a unique generated name and return this to
the client in the
Declare-Ok method.

	passive (bool (bit in AMQP)) – Do not create queue
If set, the server will reply with Declare-Ok if the queue
already
exists with the same name, and raise an error if not. The
client can
use this to check whether a queue exists without modifying
the
server state. When set, all other method fields except name
and no-wait
are ignored. A declare with both passive and no-wait has no
effect.
Arguments are compared for semantic equivalence.

	durable (bool (bit in AMQP)) – Request a durable queue
If set when creating a new queue, the queue will be marked
as durable. Durable
queues remain active when a server restarts. Non-durable
queues (transient
queues) are purged if/when a server restarts. Note that
durable queues do not
necessarily hold persistent messages, although it does not
make sense to send
persistent messages to a transient queue.

	exclusive (bool (bit in AMQP)) – Request an exclusive queue
Exclusive queues may only be accessed by the current
connection, and are
deleted when that connection closes. Passive declaration of
an exclusive
queue by other connections are not allowed.

	auto_delete (bool (bit in AMQP)) – Auto-delete queue when unused
If set, the queue is deleted when all consumers have
finished using it. The last
consumer can be cancelled either explicitly or because its
channel is closed. If
there was no consumer ever on the queue, it won’t be
deleted. Applications can
explicitly delete auto-delete queues using the Delete method
as normal.

	arguments (table. See coolamqp.uplink.framing.field_table (table in AMQP)) – Arguments for declaration
A set of arguments for the declaration. The syntax and
semantics of these
arguments depends on the server implementation.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueueDelete(queue, if_unused, if_empty, no_wait)

	Delete a queue

This method deletes a queue. When a queue is deleted any pending
messages are sent
to a dead-letter queue if this is defined in the server
configuration, and all
consumers on the queue are cancelled.

	Parameters

	
	queue (binary type (max length 255) (queue-name in AMQP)) – Specifies the name of the queue to delete.

	if_unused (bool (bit in AMQP)) – Delete only if unused
If set, the server will only delete the queue if it has no
consumers. If the
queue has consumers the server does does not delete it but
raises a channel
exception instead.

	if_empty (bool (bit in AMQP)) – Delete only if empty
If set, the server will only delete the queue if it has no
messages.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueueDeclareOk(queue, message_count, consumer_count)

	Confirms a queue definition

This method confirms a Declare method and confirms the name of
the queue, essential
for automatically-named queues.

	Parameters

	
	queue (binary type (max length 255) (queue-name in AMQP)) – Reports the name of the queue. if the server generated a
queue name, this field
contains that name.

	consumer_count (int, 32 bit unsigned (long in AMQP)) – Number of consumers
Reports the number of active consumers for the queue. Note
that consumers can
suspend activity (Channel.Flow) in which case they do not
appear in this count.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueueDeleteOk(message_count)

	Confirm deletion of a queue

This method confirms the deletion of a queue.

	Parameters

	message_count (int, 32 bit unsigned (message-count in AMQP)) – Reports the number of messages deleted.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueuePurge(queue, no_wait)

	Purge a queue

This method removes all messages from a queue which are not
awaiting
acknowledgment.

	Parameters

	queue (binary type (max length 255) (queue-name in AMQP)) – Specifies the name of the queue to purge.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueuePurgeOk(message_count)

	Confirms a queue purge

This method confirms the purge of a queue.

	Parameters

	message_count (int, 32 bit unsigned (message-count in AMQP)) – Reports the number of messages purged.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueueUnbind(queue, exchange, routing_key, arguments)

	Unbind a queue from an exchange

This method unbinds a queue from an exchange.

	Parameters

	
	queue (binary type (max length 255) (queue-name in AMQP)) – Specifies the name of the queue to unbind.

	exchange (binary type (max length 255) (exchange-name in AMQP)) – The name of the exchange to unbind from.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Routing key of binding
Specifies the routing key of the binding to unbind.

	arguments (table. See coolamqp.uplink.framing.field_table (table in AMQP)) – Arguments of binding
Specifies the arguments of the binding to unbind.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.QueueUnbindOk

	Confirm unbind successful

This method confirms that the unbind was successful.

	
class coolamqp.framing.definitions.BasicAck(delivery_tag, multiple)

	Acknowledge one or more messages

When sent by the client, this method acknowledges one or more
messages delivered via the Deliver or Get-Ok methods.
When sent by server, this method acknowledges one or more
messages published with the Publish method on a channel in
confirm mode.
The acknowledgement can be for a single message or a set of
messages up to and including a specific message.

	Parameters

	multiple (bool (bit in AMQP)) – Acknowledge multiple messages
If set to 1, the delivery tag is treated as “up to and
including”, so that multiple messages can be acknowledged
with a single method. If set to zero, the delivery tag
refers to a single message. If the multiple field is 1, and
the delivery tag is zero, this indicates acknowledgement of
all outstanding messages.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicConsume(queue, consumer_tag, no_local, no_ack, exclusive, no_wait, arguments)

	Start a queue consumer

This method asks the server to start a “consumer”, which is a
transient request for
messages from a specific queue. Consumers last as long as the
channel they were
declared on, or until the client cancels them.

	Parameters

	
	queue (binary type (max length 255) (queue-name in AMQP)) – Specifies the name of the queue to consume from.

	consumer_tag (binary type (max length 255) (consumer-tag in AMQP)) – Specifies the identifier for the consumer. the consumer tag
is local to a
channel, so two clients can use the same consumer tags. If
this field is
empty the server will generate a unique tag.

	exclusive (bool (bit in AMQP)) – Request exclusive access
Request exclusive consumer access, meaning only this
consumer can access the
queue.

	arguments (table. See coolamqp.uplink.framing.field_table (table in AMQP)) – Arguments for declaration
A set of arguments for the consume. The syntax and semantics
of these
arguments depends on the server implementation.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicCancel(consumer_tag, no_wait)

	End a queue consumer

This method cancels a consumer. This does not affect already
delivered
messages, but it does mean the server will not send any more
messages for
that consumer. The client may receive an arbitrary number of
messages in
between sending the cancel method and receiving the cancel-ok
reply.
It may also be sent from the server to the client in the event
of the consumer being unexpectedly cancelled (i.e. cancelled
for any reason other than the server receiving the
corresponding basic.cancel from the client). This allows
clients to be notified of the loss of consumers due to events
such as queue deletion. Note that as it is not a MUST for
clients to accept this method from the server, it is advisable
for the broker to be able to identify those clients that are
capable of accepting the method, through some means of
capability negotiation.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicConsumeOk(consumer_tag)

	Confirm a new consumer

The server provides the client with a consumer tag, which is
used by the client
for methods called on the consumer at a later stage.

	Parameters

	consumer_tag (binary type (max length 255) (consumer-tag in AMQP)) – Holds the consumer tag specified by the client or provided
by the server.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicCancelOk(consumer_tag)

	Confirm a cancelled consumer

This method confirms that the cancellation was completed.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicDeliver(consumer_tag, delivery_tag, redelivered, exchange, routing_key)

	Notify the client of a consumer message

This method delivers a message to the client, via a consumer. In
the asynchronous
message delivery model, the client starts a consumer using the
Consume method, then
the server responds with Deliver methods as and when messages
arrive for that
consumer.

	Parameters

	
	exchange (binary type (max length 255) (exchange-name in AMQP)) – Specifies the name of the exchange that the message was
originally published to.
May be empty, indicating the default exchange.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Message routing key
Specifies the routing key name specified when the message
was published.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicGet(queue, no_ack)

	Direct access to a queue

This method provides a direct access to the messages in a queue
using a synchronous
dialogue that is designed for specific types of application
where synchronous
functionality is more important than performance.

	Parameters

	queue (binary type (max length 255) (queue-name in AMQP)) – Specifies the name of the queue to get a message from.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicGetOk(delivery_tag, redelivered, exchange, routing_key, message_count)

	Provide client with a message

This method delivers a message to the client following a get
method. A message
delivered by ‘get-ok’ must be acknowledged unless the no-ack
option was set in the
get method.

	Parameters

	
	exchange (binary type (max length 255) (exchange-name in AMQP)) – Specifies the name of the exchange that the message was
originally published to.
If empty, the message was published to the default exchange.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Message routing key
Specifies the routing key name specified when the message
was published.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicGetEmpty

	Indicate no messages available

This method tells the client that the queue has no messages
available for the
client.

	
class coolamqp.framing.definitions.BasicNack(delivery_tag, multiple, requeue)

	Reject one or more incoming messages

This method allows a client to reject one or more incoming
messages. It can be
used to interrupt and cancel large incoming messages, or return
untreatable
messages to their original queue.
This method is also used by the server to inform publishers on
channels in
confirm mode of unhandled messages. If a publisher receives this
method, it
probably needs to republish the offending messages.

	Parameters

	
	multiple (bool (bit in AMQP)) – Reject multiple messages
If set to 1, the delivery tag is treated as “up to and
including”, so that multiple messages can be rejected
with a single method. If set to zero, the delivery tag
refers to a single message. If the multiple field is 1, and
the delivery tag is zero, this indicates rejection of
all outstanding messages.

	requeue (bool (bit in AMQP)) – Requeue the message
If requeue is true, the server will attempt to requeue the
message. If requeue
is false or the requeue attempt fails the messages are
discarded or dead-lettered.
Clients receiving the Nack methods should ignore this flag.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicPublish(exchange, routing_key, mandatory, immediate)

	Publish a message

This method publishes a message to a specific exchange. The
message will be routed
to queues as defined by the exchange configuration and
distributed to any active
consumers when the transaction, if any, is committed.

	Parameters

	
	exchange (binary type (max length 255) (exchange-name in AMQP)) – Specifies the name of the exchange to publish to. the
exchange name can be
empty, meaning the default exchange. If the exchange name is
specified, and that
exchange does not exist, the server will raise a channel
exception.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Message routing key
Specifies the routing key for the message. The routing key
is used for routing
messages depending on the exchange configuration.

	mandatory (bool (bit in AMQP)) – Indicate mandatory routing
This flag tells the server how to react if the message
cannot be routed to a
queue. If this flag is set, the server will return an
unroutable message with a
Return method. If this flag is zero, the server silently
drops the message.

	immediate (bool (bit in AMQP)) – Request immediate delivery
This flag tells the server how to react if the message
cannot be routed to a
queue consumer immediately. If this flag is set, the server
will return an
undeliverable message with a Return method. If this flag is
zero, the server
will queue the message, but with no guarantee that it will
ever be consumed.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicQos(prefetch_size, prefetch_count, global_)

	Specify quality of service

This method requests a specific quality of service. The QoS can
be specified for the
current channel or for all channels on the connection. The
particular properties and
semantics of a qos method always depend on the content class
semantics. Though the
qos method could in principle apply to both peers, it is
currently meaningful only
for the server.

	Parameters

	
	prefetch_size (int, 32 bit unsigned (long in AMQP)) – Prefetch window in octets
The client can request that messages be sent in advance so
that when the client
finishes processing a message, the following message is
already held locally,
rather than needing to be sent down the channel. Prefetching
gives a performance
improvement. This field specifies the prefetch window size
in octets. The server
will send a message in advance if it is equal to or smaller
in size than the
available prefetch size (and also falls into other prefetch
limits). May be set
to zero, meaning “no specific limit”, although other
prefetch limits may still
apply. The prefetch-size is ignored if the no-ack option is
set.

	prefetch_count (int, 16 bit unsigned (short in AMQP)) – Prefetch window in messages
Specifies a prefetch window in terms of whole messages. This
field may be used
in combination with the prefetch-size field; a message will
only be sent in
advance if both prefetch windows (and those at the channel
and connection level)
allow it. The prefetch-count is ignored if the no-ack option
is set.

	global (bool (bit in AMQP)) – Apply to entire connection
RabbitMQ has reinterpreted this field. The original
specification said: “By default the QoS settings apply to
the current channel only. If this field is set, they are
applied to the entire connection.” Instead, RabbitMQ takes
global=false to mean that the QoS settings should apply
per-consumer (for new consumers on the channel; existing
ones being unaffected) and global=true to mean that the QoS
settings should apply per-channel.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicQosOk

	Confirm the requested qos

This method tells the client that the requested QoS levels could
be handled by the
server. The requested QoS applies to all active consumers until
a new QoS is
defined.

	
class coolamqp.framing.definitions.BasicReturn(reply_code, reply_text, exchange, routing_key)

	Return a failed message

This method returns an undeliverable message that was published
with the “immediate”
flag set, or an unroutable message published with the
“mandatory” flag set. The
reply code and text provide information about the reason that
the message was
undeliverable.

	Parameters

	
	exchange (binary type (max length 255) (exchange-name in AMQP)) – Specifies the name of the exchange that the message was
originally published
to. May be empty, meaning the default exchange.

	routing_key (binary type (max length 255) (shortstr in AMQP)) – Message routing key
Specifies the routing key name specified when the message
was published.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicReject(delivery_tag, requeue)

	Reject an incoming message

This method allows a client to reject a message. It can be used
to interrupt and
cancel large incoming messages, or return untreatable messages
to their original
queue.

	Parameters

	requeue (bool (bit in AMQP)) – Requeue the message
If requeue is true, the server will attempt to requeue the
message. If requeue
is false or the requeue attempt fails the messages are
discarded or dead-lettered.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicRecoverAsync(requeue)

	Redeliver unacknowledged messages

This method asks the server to redeliver all unacknowledged
messages on a
specified channel. Zero or more messages may be redelivered.
This method
is deprecated in favour of the synchronous Recover/Recover-Ok.

	Parameters

	requeue (bool (bit in AMQP)) – Requeue the message
If this field is zero, the message will be redelivered to
the original
recipient. If this bit is 1, the server will attempt to
requeue the message,
potentially then delivering it to an alternative subscriber.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicRecover(requeue)

	Redeliver unacknowledged messages

This method asks the server to redeliver all unacknowledged
messages on a
specified channel. Zero or more messages may be redelivered.
This method
replaces the asynchronous Recover.

	Parameters

	requeue (bool (bit in AMQP)) – Requeue the message
If this field is zero, the message will be redelivered to
the original
recipient. If this bit is 1, the server will attempt to
requeue the message,
potentially then delivering it to an alternative subscriber.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.BasicRecoverOk

	Confirm recovery

This method acknowledges a Basic.Recover method.

	
class coolamqp.framing.definitions.TxCommit

	Commit the current transaction

This method commits all message publications and acknowledgments
performed in
the current transaction. A new transaction starts immediately
after a commit.

	
class coolamqp.framing.definitions.TxCommitOk

	Confirm a successful commit

This method confirms to the client that the commit succeeded.
Note that if a commit
fails, the server raises a channel exception.

	
class coolamqp.framing.definitions.TxRollback

	Abandon the current transaction

This method abandons all message publications and
acknowledgments performed in
the current transaction. A new transaction starts immediately
after a rollback.
Note that unacked messages will not be automatically redelivered
by rollback;
if that is required an explicit recover call should be issued.

	
class coolamqp.framing.definitions.TxRollbackOk

	Confirm successful rollback

This method confirms to the client that the rollback succeeded.
Note that if an
rollback fails, the server raises a channel exception.

	
class coolamqp.framing.definitions.TxSelect

	Select standard transaction mode

This method sets the channel to use standard transactions. The
client must use this
method at least once on a channel before using the Commit or
Rollback methods.

	
class coolamqp.framing.definitions.TxSelectOk

	Confirm transaction mode

This method confirms to the client that the channel was
successfully set to use
standard transactions.

	
class coolamqp.framing.definitions.ConfirmSelect(nowait)

	This method sets the channel to use publisher acknowledgements.

The client can only use this method on a non-transactional
channel.

	Parameters

	nowait (bool (bit in AMQP)) – If set, the server will not respond to the method. the
client should
not wait for a reply method. If the server could not
complete the
method it will raise a channel or connection exception.

	
get_size()

	Calculate the size of this frame.

Needs to be overloaded, unless you’re a class with IS_CONTENT_STATIC

	Return type

	int

	Returns

	int, size of argument section

	Raises

	RuntimeError – this class isn’t IS_CONTENT_STATIC and this method was called directly.
In this case, you should have rather subclassed it.

	
write_arguments(buf)

	Write the argument portion of this frame into target buffer.

	Parameters

	buf (tp.BinaryIO) – buffer to write to

	Raises

	ValueError – some field here is invalid!

	Return type

	None

	
class coolamqp.framing.definitions.ConfirmSelectOk

	This method confirms to the client that the channel was

successfully
set to use publisher acknowledgements.

Usage basics

First off, you need a Cluster object:

	
class coolamqp.clustering.Cluster(nodes, on_fail=None, extra_properties=None, log_frames=None, name=None, on_blocked=None, tracer=None)

	Frontend for your AMQP needs.

This has ListenerThread.

Call .start() to connect to AMQP.

It is not safe to fork() after .start() is called, but it’s OK before.

	Parameters

	
	nodes – list of nodes, or a single node. For now, only one is supported.

	on_fail – callable/0 to call when connection fails in an
unclean way. This is a one-shot

	extra_properties – refer to documentation in [/coolamqp/connection/connection.py]
Connection.__init__

	log_frames (tp.Optional[coolamqp.tracing.BaseFrameTracer]) – an object that supports logging each and every frame CoolAMQP sends and
receives from the broker

	name – name to appear in log items and prctl() for the listener thread

	on_blocked – callable to call when ConnectionBlocked/ConnectionUnblocked is received. It will be
called with a value of True if connection becomes blocked, and False upon an unblock

	tracer – tracer, if opentracing is installed

	
bind(queue, exchange, routing_key, persistent=False, span=None, dont_trace=False)

	Bind a queue to an exchange

	
consume()

	Start consuming from a queue.

args and kwargs will be passed to Consumer constructor (coolamqp.attaches.consumer.Consumer).
Don’t use future_to_notify - it’s done here!

Take care not to lose the Consumer object - it’s the only way to cancel a consumer!

	Parameters

	
	queue – Queue object, being consumed from right now.
Note that name of anonymous queue might change at any time!

	on_message – callable that will process incoming messages
if you leave it at None, messages will be .put into self.events

	span – optional span, if opentracing is installed

	dont_trace – if True, this won’t output a span

	Return type

	Tuple[Consumer, Future]

	Returns

	a tuple (Consumer instance, and a Future), that tells, when consumer is ready

	
declare(obj, persistent=False, span=None, dont_trace=False)

	Declare a Queue/Exchange

	Parameters

	
	obj (tp.Union[Queue, Exchange]) – Queue/Exchange object

	persistent (bool) – should it be redefined upon reconnect?

	span (tp.Optional[opentracing.Span]) – optional parent span, if opentracing is installed

	dont_trace (bool) – if True, a span won’t be output

	Return type

	concurrent.futures.Future

	Returns

	Future

	
delete_queue(queue)

	Delete a queue.

	Parameters

	queue (coolamqp.objects.Queue) – Queue instance that represents what to delete

	Return type

	Future

	Returns

	a Future (will succeed with None or fail with AMQPError)

	
drain()

	Return an Event.

	Parameters

	
	timeout – time to wait for an event. 0 means return immediately. None means block forever

	span – optional parent span, if opentracing is installed

	dont_trace – if True, this span won’t be traced

	Return type

	Event

	Returns

	an Event instance. NothingMuch is returned when there’s nothing within a given timoeout

	
publish(message, exchange=None, routing_key='', tx=None, confirm=None, span=None, dont_trace=False)

	Publish a message.

	Parameters

	
	message (Message) – Message to publish

	exchange (tp.Union[Exchange, str, bytes]) – exchange to use. Default is the “direct” empty-name exchange.

	routing_key (tp.Union[str, bytes]) – routing key to use

	confirm (tp.Optional[bool]) – Whether to publish it using confirms/transactions.
If you choose so, you will receive a Future that can be used
to check it broker took responsibility for this message.
Note that if tx if False, and message cannot be delivered to broker at once,
it will be discarded

	tx (tp.Optional[bool]) – deprecated, alias for confirm

	span (tp.Optional[opentracing.Span]) – optionally, current span, if opentracing is installed

	dont_trace (bool) – if set to True, a span won’t be generated

	Return type

	tp.Optional[Future]

	Returns

	Future to be finished on completion or None, is confirm/tx was not chosen

	
shutdown(wait=True)

	Terminate all connections, release resources - finish the job.

	Parameters

	wait (bool) – block until this is done

	Raises

	RuntimeError – if called without start() being called first

	Return type

	None

	
start(wait=True, timeout=10.0)

	Connect to broker. Initialize Cluster.

Only after this call is Cluster usable.
It is not safe to fork after this.

	Parameters

	
	wait (bool) – block until connection is ready

	timeout (float) – timeout to wait until the connection is ready. If it is not, a
ConnectionDead error will be raised

	Raises

	
	RuntimeError – called more than once

	ConnectionDead – failed to connect within timeout

	Return type

	None

You will need to initialize it with NodeDefinitions:

	
class coolamqp.objects.NodeDefinition(*args, **kwargs)

	Definition of a reachable AMQP node.

This object is hashable.

>>> a = NodeDefinition(host='192.168.0.1', user='admin', password='password',
>>> virtual_host='vhost')

or

>>> a = NodeDefinition('192.168.0.1', 'admin', 'password')

or

>>> a = NodeDefinition('amqp://user:password@host/virtual_host')

or

>>> a = NodeDefinition('amqp://user:password@host:port/virtual_host', hearbeat=20)

AMQP connection string may be either bytes or str/unicode

	Additional keyword parameters that can be specified:
	heartbeat - heartbeat interval in seconds
port - TCP port to use. Default is 5672

	Raises

	ValueError – invalid parameters

You can send messages:

	
class coolamqp.objects.Message(body, properties=None)

	An AMQP message. Has a binary body, and some properties.

Properties is a highly regularized class - see
coolamqp.framing.definitions.BasicContentPropertyList
for a list of possible properties.

	Parameters

	
	body (anything with a buffer interface) – stream of octets

	properties (MessageProperties instance, None or a dict (SLOW!)) – AMQP properties to be sent along.
default is ‘no properties at all’
You can pass a dict - it will be passed to
MessageProperties,
but it’s slow - don’t do that.

and receive them

	
class coolamqp.objects.ReceivedMessage(body, exchange_name, routing_key, properties=None, delivery_tag=None, ack=None, nack=None)

	A message that was received from the AMQP broker.

It additionally has an exchange name, routing key used, it’s delivery tag,
and methods for ack() or nack().

Note that if the consumer that generated this message was no_ack, .ack()
and .nack() are no-ops.

	
ack()

	Acknowledge reception of this message.

This is a no-op if a Consumer was called with no_ack=True.

If called after an ack() or nack() was called, this will be a no-op.

	
nack()

	Negatively acknowledge reception of this message.

This is a no-op if a Consumer was called with no_ack=True. If no_ack was False,
the message will be requeued and redelivered by the broker

If called after an ack() or nack() was called, this will be a no-op.

Frame tracing

CoolAMQP allows you to trace every sent or received frame. Just provide an instance of

	
class coolamqp.tracing.BaseFrameTracer

	An abstract do-nothing frame tracer

	
on_frame(timestamp, frame, direction)

	Called by AMQP upon receiving a frame information

	Parameters

	
	timestamp (float) – timestamp

	frame (coolamqp.framing.base.AMQPFrame) – frame that is sent or received

	direction (str) – either ‘to_client’ or ‘to_server’

LoggingFrameTracer

To show each frame that is sent or received to the server use the following:

import logging

logger = logging.getLogger(__name__)

from coolamqp.tracing import LoggingFrameTracer

frame_tracer = LoggingFrameTracer(logger, logging.WARNING)

cluster = Cluster([NODE], log_frames=frame_logger)
cluster.start()

Documentation of the class:

	
class coolamqp.tracing.LoggingFrameTracer(logger, log_level=30)

	A frame tracer that outputs each frame to log

	Parameters

	
	logger – the logger to log onto

	log_level – the level of logging to log with

	
on_frame(timestamp, frame, direction)

	Called by AMQP upon receiving a frame information

	Parameters

	
	timestamp (float) – timestamp

	frame (coolamqp.framing.base.AMQPFrame) – frame that is sent or received

	direction (str) – either ‘to_client’ or ‘to_server’

HoldingFrameTracer

	
class coolamqp.tracing.HoldingFrameTracer

	A frame tracer that holds the frames in memory

	Variables

	frames – a list of tuple (direction:str (either ‘to_client’ or ‘to_server’),
timestamp::float,
frame:: AMQPFrame)

	
clear()

	Clear internal frame list

	
on_frame(timestamp, frame, direction)

	Called by AMQP upon receiving a frame information

	Parameters

	
	timestamp (float) – timestamp

	frame (coolamqp.framing.base.AMQPFrame) – frame that is sent or received

	direction (str) – either ‘to_client’ or ‘to_server’

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	ack() (coolamqp.objects.ReceivedMessage method)

B

 	
 	BaseFrameTracer (class in coolamqp.tracing)

 	BasicAck (class in coolamqp.framing.definitions)

 	BasicCancel (class in coolamqp.framing.definitions)

 	BasicCancelOk (class in coolamqp.framing.definitions)

 	BasicConsume (class in coolamqp.framing.definitions)

 	BasicConsumeOk (class in coolamqp.framing.definitions)

 	BasicDeliver (class in coolamqp.framing.definitions)

 	BasicGet (class in coolamqp.framing.definitions)

 	BasicGetEmpty (class in coolamqp.framing.definitions)

 	BasicGetOk (class in coolamqp.framing.definitions)

 	
 	BasicNack (class in coolamqp.framing.definitions)

 	BasicPublish (class in coolamqp.framing.definitions)

 	BasicQos (class in coolamqp.framing.definitions)

 	BasicQosOk (class in coolamqp.framing.definitions)

 	BasicRecover (class in coolamqp.framing.definitions)

 	BasicRecoverAsync (class in coolamqp.framing.definitions)

 	BasicRecoverOk (class in coolamqp.framing.definitions)

 	BasicReject (class in coolamqp.framing.definitions)

 	BasicReturn (class in coolamqp.framing.definitions)

 	bind() (coolamqp.clustering.Cluster method), [1], [2]

C

 	
 	cancel() (coolamqp.attaches.Consumer method)

 	ChannelClose (class in coolamqp.framing.definitions)

 	ChannelCloseOk (class in coolamqp.framing.definitions)

 	ChannelFlow (class in coolamqp.framing.definitions)

 	ChannelFlowOk (class in coolamqp.framing.definitions)

 	ChannelOpen (class in coolamqp.framing.definitions)

 	ChannelOpenOk (class in coolamqp.framing.definitions)

 	clear() (coolamqp.tracing.HoldingFrameTracer method)

 	Cluster (class in coolamqp.clustering), [1], [2]

 	ConfirmSelect (class in coolamqp.framing.definitions)

 	ConfirmSelectOk (class in coolamqp.framing.definitions)

 	ConnectionBlocked (class in coolamqp.framing.definitions)

 	
 	ConnectionClose (class in coolamqp.framing.definitions)

 	ConnectionCloseOk (class in coolamqp.framing.definitions)

 	ConnectionOpen (class in coolamqp.framing.definitions)

 	ConnectionOpenOk (class in coolamqp.framing.definitions)

 	ConnectionSecure (class in coolamqp.framing.definitions)

 	ConnectionSecureOk (class in coolamqp.framing.definitions)

 	ConnectionStart (class in coolamqp.framing.definitions)

 	ConnectionStartOk (class in coolamqp.framing.definitions)

 	ConnectionTune (class in coolamqp.framing.definitions)

 	ConnectionTuneOk (class in coolamqp.framing.definitions)

 	ConnectionUnblocked (class in coolamqp.framing.definitions)

 	consume() (coolamqp.clustering.Cluster method), [1], [2]

 	Consumer (class in coolamqp.attaches)

D

 	
 	declare() (coolamqp.clustering.Cluster method), [1], [2]

 	
 	delete_queue() (coolamqp.clustering.Cluster method), [1], [2]

 	drain() (coolamqp.clustering.Cluster method), [1], [2]

E

 	
 	ExchangeBind (class in coolamqp.framing.definitions)

 	ExchangeBindOk (class in coolamqp.framing.definitions)

 	ExchangeDeclare (class in coolamqp.framing.definitions)

 	ExchangeDeclareOk (class in coolamqp.framing.definitions)

 	
 	ExchangeDelete (class in coolamqp.framing.definitions)

 	ExchangeDeleteOk (class in coolamqp.framing.definitions)

 	ExchangeUnbind (class in coolamqp.framing.definitions)

 	ExchangeUnbindOk (class in coolamqp.framing.definitions)

G

 	
 	get_size() (coolamqp.framing.definitions.BasicAck method)

 	(coolamqp.framing.definitions.BasicCancel method)

 	(coolamqp.framing.definitions.BasicCancelOk method)

 	(coolamqp.framing.definitions.BasicConsume method)

 	(coolamqp.framing.definitions.BasicConsumeOk method)

 	(coolamqp.framing.definitions.BasicDeliver method)

 	(coolamqp.framing.definitions.BasicGet method)

 	(coolamqp.framing.definitions.BasicGetOk method)

 	(coolamqp.framing.definitions.BasicNack method)

 	(coolamqp.framing.definitions.BasicPublish method)

 	(coolamqp.framing.definitions.BasicQos method)

 	(coolamqp.framing.definitions.BasicRecover method)

 	(coolamqp.framing.definitions.BasicRecoverAsync method)

 	(coolamqp.framing.definitions.BasicReject method)

 	(coolamqp.framing.definitions.BasicReturn method)

 	(coolamqp.framing.definitions.ChannelClose method)

 	(coolamqp.framing.definitions.ChannelFlow method)

 	(coolamqp.framing.definitions.ChannelFlowOk method)

 	(coolamqp.framing.definitions.ConfirmSelect method)

 	(coolamqp.framing.definitions.ConnectionBlocked method)

 	(coolamqp.framing.definitions.ConnectionClose method)

 	(coolamqp.framing.definitions.ConnectionOpen method)

 	(coolamqp.framing.definitions.ConnectionSecure method)

 	(coolamqp.framing.definitions.ConnectionSecureOk method)

 	(coolamqp.framing.definitions.ConnectionStart method)

 	(coolamqp.framing.definitions.ConnectionStartOk method)

 	(coolamqp.framing.definitions.ConnectionTune method)

 	(coolamqp.framing.definitions.ConnectionTuneOk method)

 	(coolamqp.framing.definitions.ExchangeBind method)

 	(coolamqp.framing.definitions.ExchangeDeclare method)

 	(coolamqp.framing.definitions.ExchangeDelete method)

 	(coolamqp.framing.definitions.ExchangeUnbind method)

 	(coolamqp.framing.definitions.QueueBind method)

 	(coolamqp.framing.definitions.QueueDeclare method)

 	(coolamqp.framing.definitions.QueueDeclareOk method)

 	(coolamqp.framing.definitions.QueueDelete method)

 	(coolamqp.framing.definitions.QueueDeleteOk method)

 	(coolamqp.framing.definitions.QueuePurge method)

 	(coolamqp.framing.definitions.QueuePurgeOk method)

 	(coolamqp.framing.definitions.QueueUnbind method)

H

 	
 	HoldingFrameTracer (class in coolamqp.tracing)

L

 	
 	LoggingFrameTracer (class in coolamqp.tracing)

M

 	
 	Message (class in coolamqp.objects), [1]

N

 	
 	nack() (coolamqp.objects.ReceivedMessage method)

 	
 	NodeDefinition (class in coolamqp.objects), [1]

O

 	
 	on_broker_cancel (coolamqp.attaches.Consumer attribute)

 	on_cancel (coolamqp.attaches.Consumer attribute)

 	on_close() (coolamqp.attaches.Consumer method)

 	on_delivery() (coolamqp.attaches.Consumer method)

 	
 	on_frame() (coolamqp.tracing.BaseFrameTracer method)

 	(coolamqp.tracing.HoldingFrameTracer method)

 	(coolamqp.tracing.LoggingFrameTracer method)

 	on_operational() (coolamqp.attaches.Consumer method)

 	on_setup() (coolamqp.attaches.Consumer method)

P

 	
 	Properties (coolamqp.objects.Message attribute)

 	
 	publish() (coolamqp.clustering.Cluster method), [1], [2]

Q

 	
 	QueueBind (class in coolamqp.framing.definitions)

 	QueueBindOk (class in coolamqp.framing.definitions)

 	QueueDeclare (class in coolamqp.framing.definitions)

 	QueueDeclareOk (class in coolamqp.framing.definitions)

 	QueueDelete (class in coolamqp.framing.definitions)

 	
 	QueueDeleteOk (class in coolamqp.framing.definitions)

 	QueuePurge (class in coolamqp.framing.definitions)

 	QueuePurgeOk (class in coolamqp.framing.definitions)

 	QueueUnbind (class in coolamqp.framing.definitions)

 	QueueUnbindOk (class in coolamqp.framing.definitions)

R

 	
 	ReceivedMessage (class in coolamqp.objects)

S

 	
 	set_qos() (coolamqp.attaches.Consumer method)

 	
 	shutdown() (coolamqp.clustering.Cluster method), [1], [2]

 	start() (coolamqp.clustering.Cluster method), [1], [2]

T

 	
 	TxCommit (class in coolamqp.framing.definitions)

 	TxCommitOk (class in coolamqp.framing.definitions)

 	TxRollback (class in coolamqp.framing.definitions)

 	
 	TxRollbackOk (class in coolamqp.framing.definitions)

 	TxSelect (class in coolamqp.framing.definitions)

 	TxSelectOk (class in coolamqp.framing.definitions)

W

 	
 	write_arguments() (coolamqp.framing.definitions.BasicAck method)

 	(coolamqp.framing.definitions.BasicCancel method)

 	(coolamqp.framing.definitions.BasicCancelOk method)

 	(coolamqp.framing.definitions.BasicConsume method)

 	(coolamqp.framing.definitions.BasicConsumeOk method)

 	(coolamqp.framing.definitions.BasicDeliver method)

 	(coolamqp.framing.definitions.BasicGet method)

 	(coolamqp.framing.definitions.BasicGetOk method)

 	(coolamqp.framing.definitions.BasicNack method)

 	(coolamqp.framing.definitions.BasicPublish method)

 	(coolamqp.framing.definitions.BasicQos method)

 	(coolamqp.framing.definitions.BasicRecover method)

 	(coolamqp.framing.definitions.BasicRecoverAsync method)

 	(coolamqp.framing.definitions.BasicReject method)

 	(coolamqp.framing.definitions.BasicReturn method)

 	(coolamqp.framing.definitions.ChannelClose method)

 	(coolamqp.framing.definitions.ChannelFlow method)

 	(coolamqp.framing.definitions.ChannelFlowOk method)

 	(coolamqp.framing.definitions.ConfirmSelect method)

 	(coolamqp.framing.definitions.ConnectionBlocked method)

 	(coolamqp.framing.definitions.ConnectionClose method)

 	(coolamqp.framing.definitions.ConnectionOpen method)

 	(coolamqp.framing.definitions.ConnectionSecure method)

 	(coolamqp.framing.definitions.ConnectionSecureOk method)

 	(coolamqp.framing.definitions.ConnectionStart method)

 	(coolamqp.framing.definitions.ConnectionStartOk method)

 	(coolamqp.framing.definitions.ConnectionTune method)

 	(coolamqp.framing.definitions.ConnectionTuneOk method)

 	(coolamqp.framing.definitions.ExchangeBind method)

 	(coolamqp.framing.definitions.ExchangeDeclare method)

 	(coolamqp.framing.definitions.ExchangeDelete method)

 	(coolamqp.framing.definitions.ExchangeUnbind method)

 	(coolamqp.framing.definitions.QueueBind method)

 	(coolamqp.framing.definitions.QueueDeclare method)

 	(coolamqp.framing.definitions.QueueDeclareOk method)

 	(coolamqp.framing.definitions.QueueDelete method)

 	(coolamqp.framing.definitions.QueueDeleteOk method)

 	(coolamqp.framing.definitions.QueuePurge method)

 	(coolamqp.framing.definitions.QueuePurgeOk method)

 	(coolamqp.framing.definitions.QueueUnbind method)

 nav.xhtml

 Table of Contents

 		
 Welcome to CoolAMQP’s documentation!

 		
 CoolAMQP cluster

 		
 Tutorial

 		
 Publishing and consuming

 		
 Caveats

 		
 memoryviews

 		
 Glossary of all AMQP frames

 		
 Usage basics

 		
 Frame tracing

 		
 LoggingFrameTracer

 		
 HoldingFrameTracer

_static/minus.png

_static/plus.png

_static/file.png

